Simple groups, permutation groups, and probability
نویسندگان
چکیده
منابع مشابه
Simple Groups, Permutation Groups, and Probability
In recent years probabilistic methods have proved useful in the solution of several problems concerning finite groups, mainly involving simple groups and permutation groups. In some cases the probabilistic nature of the problem is apparent from its very formulation (see [KL], [GKS], [LiSh1]); but in other cases the use of probability, or counting, is not entirely anticipated by the nature of th...
متن کاملFinite Permutation Groups and Finite Simple Groups
In the past two decades, there have been far-reaching developments in the problem of determining all finite non-abelian simple groups—so much so, that many people now believe that the solution to the problem is imminent. And now, as I correct these proofs in October 1980, the solution has just been announced. Of course, the solution will have a considerable effect on many related areas, both wi...
متن کاملPrimitive Permutation Groups of Simple Diagonal Type
Let G be a finite primitive group such that there is only one minimal normal subgroup M in G, this M is nonabelian and nonsimple, and a maximal normal subgroup of M is regular. Further, let H be a point stabilizer in G. Then H (1 M is a (nonabelian simple) common complement in M to all the maximal normal subgroups of M, and there is a natural identification ofMwith a direct power T m of a nonab...
متن کاملGalois Groups as Permutation Groups
Writing f(T ) = (T − r1) · · · (T − rn), the splitting field of f(T ) over K is K(r1, . . . , rn). Each σ in the Galois group of f(T ) over K permutes the ri’s since σ fixes K and therefore f(r) = 0⇒ f(σ(r)) = 0. The automorphism σ is completely determined by its permutation of the ri’s since the ri’s generate the splitting field over K. A permutation of the ri’s can be viewed as a permutation ...
متن کاملQUASI-PERMUTATION REPRESENTATIONS OF METACYCLIC 2-GROUPS
By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus, every permutation matrix over C is a quasipermutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a fa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the American Mathematical Society
سال: 1999
ISSN: 0894-0347,1088-6834
DOI: 10.1090/s0894-0347-99-00288-x